Климатогенный фактор
Минимальная температура воздуха составила 2,1ºС в 1992 г., а максимальная – 5,9ºС в 1971 г. Если сравнивать тенденции изменения температуры по периодам, то c 1960-х гг. до 1990-х гг. колебания осуществлялись в диапазоне 4ºС. В начале 90-х гг. диапазон колебаний средних температур составил 3ºС, а с конца 90-х гг. снова наблюдается повышение показателей до 4,2ºС-4,3ºС. Отмечается несовпадение данных по многолетним наблюдениям: при увеличении температуры за указанный период наблюдений выявляется, наоборот, падение температуры. Данный факт можно объяснить тем, что в начале 90-х годов отмечались минимальные температуры за весь анализируемый срок наблюдений. Кроме того, примерно до середины 70-х годов амплитуда колебания температуры воздуха была гораздо более существенна, по сравнению со следующим периодом (Братков и др., 2005).
Отрицательные минимальные температуры характерны для пяти месяцев в году, начиная уже с ноября, и, соответственно, самая низкая температура бывает в январе -10,1ºС. Отрицательные максимальные температуры характерны только для января. В последующие месяцы рост показателей осуществляется примерно с разницей в два раза. Положительные максимальные температуры актуальны для трех летних месяцев и колеблются от 14,4ºС до 17,3ºС.
Для средних температур динамика показателей изменяется примерно в два раза. Отрицательные средние показатели характерны для четырех месяцев - декабрь, январь, февраль и даже март, причем низкий показатель встречается в январе, а немного «повыше», соответственно, в марте. Такие температурные вариации сокращают вегетационный период развития растительности и активный образ жизни беспозвоночных. Максимальные показатели средних температур выделяются в летние месяцы и диапазон колебаний составляет от 10,3ºС до 13,2ºС. Именно этот промежуток времени и характеризуется активизацией процессов жизнедеятельности беспозвоночных.
Наглядно динамику общих макроклиматических показателей можно проанализировать на примере метеоэлементов хребта Малая Хатипара.
Значительные колебания относительных высот в пределах хребта обусловили формирование вертикальных различий климата, растительности, почв и животного мира. При рассмотрении основных показателей метеоэлементов климата (таблица 2) —радиационного баланса, затрат тепла на испарение, индекса сухости, испаряемости — отмечается общая тенденция снижения показателей с высотой. Средние июльские температуры снижаются на 0,5° на каждые 100м, средние годовые - на 0,4°, радиационный баланс — на 0,7 ккал/см2, затраты тепла на испарение — на 0,19 ккал/см2, затраты тепла на нагревание - на 0,5 ккал/см2 на 100м. В то же время количество осадков и величина коэффициента увлажнения растут с высотой. Количество осадков возрастает на 64 мм на каждые 100 м, величина коэффициента увлажнения — на 0,4.
Составляющие теплового баланса с высотой меняются одинаково. Затраты тепла на испарение по всему профилю хребта изменяются мало, чего нельзя сказать о затратах тепла на нагревание. Годовые величины последних с высотой быстро уменьшаются. В данном случае показателен коэффициент отношения затрат тепла на испарение к затратам тепла на нагревание (LE/P). В долине Теберды величины LE и Р почти одинаковы, и коэффициент равняется 1,27. В пределах лугового пояса его величины возрастают до 2,0—2,13.
Уменьшение затрат тепла на нагревание с высотой сказывается на температурном режиме воздуха и характере испаряемости. В поясе луговых ассоциаций средние годовые температуры уже ниже нуля. Величины испаряемости не превышают 300мм, поэтому коэффициент увлажнения растет с 1,3 в долине Теберды до 4,8—5,8 в поясе луговых ассоциаций. Подобных значений коэффициента увлажнения у природных зон равнин умеренных широт не наблюдается (Шальнев, 1973).